Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The roles of redox enzymes in Parkinson's disease: Focus on glutaredoxin.

Identifieur interne : 000498 ( Main/Exploration ); précédent : 000497; suivant : 000499

The roles of redox enzymes in Parkinson's disease: Focus on glutaredoxin.

Auteurs : William M. Johnson [États-Unis] ; Amy L. Wilson-Delfosse [États-Unis] ; Shu G. Chen [États-Unis] ; John J. Mieyal [États-Unis]

Source :

RBID : pubmed:26097894

Abstract

Parkinson's disease (PD) results from the loss of dopaminergic neurons in the substantia nigra portion of the midbrain, and represents the second most common neurodegenerative disease in the world. Although the etiology of PD is currently unclear, oxidative stress and redox dysfunction are generally understood to play key roles in PD pathogenesis and progression. Aging and environmental factors predispose cells to adverse effects of redox changes. In addition to these factors, genetic mutations linked to PD have been observed to disrupt the redox balance. Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with autosomal dominant PD, and several of these mutations have also been shown to increase the levels of reactive oxygen species in cells. Anti-oxidant proteins are necessary to restore the redox balance and maintain cell viability. Over the past decade studies have started to demonstrate the critical importance for redox proteins mediating neuronal protection in models of PD. This commentary briefly describes some of the factors hypothesized to contribute to PD, specifically regarding the redox changes that occur in PD. Dysregulation of redox proteins in PD is highlighted by some of the work detailing the roles of peroxiredoxin-3 and thioredoxin-1 in models of PD. In an attempt to generate novel therapies for PD, several potent inhibitors of LRRK2 have been developed. The use of these compounds, both as tools to understand the biology of LRRK2 and as potential therapeutic strategies is also discussed. This mini-review then provides a historical prospective on the discovery and characterization of glutaredoxin (Grx1), and briefly describes current understanding of the role of Grx1 in PD. The review concludes by highlighting our recent publication describing the novel role for Grx1 in mediating dopaminergic neuronal protection both in vitro and in vivo.

PubMed: 26097894
PubMed Central: PMC4474481


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The roles of redox enzymes in Parkinson's disease: Focus on glutaredoxin.</title>
<author>
<name sortKey="Johnson, William M" sort="Johnson, William M" uniqKey="Johnson W" first="William M" last="Johnson">William M. Johnson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wilson Delfosse, Amy L" sort="Wilson Delfosse, Amy L" uniqKey="Wilson Delfosse A" first="Amy L" last="Wilson-Delfosse">Amy L. Wilson-Delfosse</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Shu G" sort="Chen, Shu G" uniqKey="Chen S" first="Shu G" last="Chen">Shu G. Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Case Western Reserve University, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA ; Louis B. Stokes Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA ; Louis B. Stokes Veterans Affairs Medical Research Center, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26097894</idno>
<idno type="pmid">26097894</idno>
<idno type="pmc">PMC4474481</idno>
<idno type="wicri:Area/Main/Corpus">000523</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000523</idno>
<idno type="wicri:Area/Main/Curation">000523</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000523</idno>
<idno type="wicri:Area/Main/Exploration">000523</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The roles of redox enzymes in Parkinson's disease: Focus on glutaredoxin.</title>
<author>
<name sortKey="Johnson, William M" sort="Johnson, William M" uniqKey="Johnson W" first="William M" last="Johnson">William M. Johnson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wilson Delfosse, Amy L" sort="Wilson Delfosse, Amy L" uniqKey="Wilson Delfosse A" first="Amy L" last="Wilson-Delfosse">Amy L. Wilson-Delfosse</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Shu G" sort="Chen, Shu G" uniqKey="Chen S" first="Shu G" last="Chen">Shu G. Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Case Western Reserve University, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA ; Louis B. Stokes Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA ; Louis B. Stokes Veterans Affairs Medical Research Center, Cleveland, OH 44106</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Therapeutic targets for neurological diseases</title>
<idno type="ISSN">2376-0478</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Parkinson's disease (PD) results from the loss of dopaminergic neurons in the
<i>substantia nigra</i>
portion of the midbrain, and represents the second most common neurodegenerative disease in the world. Although the etiology of PD is currently unclear, oxidative stress and redox dysfunction are generally understood to play key roles in PD pathogenesis and progression. Aging and environmental factors predispose cells to adverse effects of redox changes. In addition to these factors, genetic mutations linked to PD have been observed to disrupt the redox balance. Mutations in leucine-rich repeat kinase 2 (
<i>LRRK2</i>
) are associated with autosomal dominant PD, and several of these mutations have also been shown to increase the levels of reactive oxygen species in cells. Anti-oxidant proteins are necessary to restore the redox balance and maintain cell viability. Over the past decade studies have started to demonstrate the critical importance for redox proteins mediating neuronal protection in models of PD. This commentary briefly describes some of the factors hypothesized to contribute to PD, specifically regarding the redox changes that occur in PD. Dysregulation of redox proteins in PD is highlighted by some of the work detailing the roles of peroxiredoxin-3 and thioredoxin-1 in models of PD. In an attempt to generate novel therapies for PD, several potent inhibitors of LRRK2 have been developed. The use of these compounds, both as tools to understand the biology of LRRK2 and as potential therapeutic strategies is also discussed. This mini-review then provides a historical prospective on the discovery and characterization of glutaredoxin (Grx1), and briefly describes current understanding of the role of Grx1 in PD. The review concludes by highlighting our recent publication describing the novel role for Grx1 in mediating dopaminergic neuronal protection both
<i>in vitro</i>
and
<i>in vivo</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26097894</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">2376-0478</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2</Volume>
<Issue>2</Issue>
<PubDate>
<MedlineDate>2015</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Therapeutic targets for neurological diseases</Title>
<ISOAbbreviation>Ther Targets Neurol Dis</ISOAbbreviation>
</Journal>
<ArticleTitle>The roles of redox enzymes in Parkinson's disease: Focus on glutaredoxin.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e790</ELocationID>
<Abstract>
<AbstractText>Parkinson's disease (PD) results from the loss of dopaminergic neurons in the
<i>substantia nigra</i>
portion of the midbrain, and represents the second most common neurodegenerative disease in the world. Although the etiology of PD is currently unclear, oxidative stress and redox dysfunction are generally understood to play key roles in PD pathogenesis and progression. Aging and environmental factors predispose cells to adverse effects of redox changes. In addition to these factors, genetic mutations linked to PD have been observed to disrupt the redox balance. Mutations in leucine-rich repeat kinase 2 (
<i>LRRK2</i>
) are associated with autosomal dominant PD, and several of these mutations have also been shown to increase the levels of reactive oxygen species in cells. Anti-oxidant proteins are necessary to restore the redox balance and maintain cell viability. Over the past decade studies have started to demonstrate the critical importance for redox proteins mediating neuronal protection in models of PD. This commentary briefly describes some of the factors hypothesized to contribute to PD, specifically regarding the redox changes that occur in PD. Dysregulation of redox proteins in PD is highlighted by some of the work detailing the roles of peroxiredoxin-3 and thioredoxin-1 in models of PD. In an attempt to generate novel therapies for PD, several potent inhibitors of LRRK2 have been developed. The use of these compounds, both as tools to understand the biology of LRRK2 and as potential therapeutic strategies is also discussed. This mini-review then provides a historical prospective on the discovery and characterization of glutaredoxin (Grx1), and briefly describes current understanding of the role of Grx1 in PD. The review concludes by highlighting our recent publication describing the novel role for Grx1 in mediating dopaminergic neuronal protection both
<i>in vitro</i>
and
<i>in vivo</i>
.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>William M</ForeName>
<Initials>WM</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wilson-Delfosse</LastName>
<ForeName>Amy L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Shu G</ForeName>
<Initials>SG</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mieyal</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA ; Louis B. Stokes Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>I01 BX000290</GrantID>
<Acronym>BX</Acronym>
<Agency>BLRD VA</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS073170</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS085503</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008803</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ther Targets Neurol Dis</MedlineTA>
<NlmUniqueID>101645414</NlmUniqueID>
<ISSNLinking>2376-0478</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">C. elegans</Keyword>
<Keyword MajorTopicYN="N">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">LRRK2</Keyword>
<Keyword MajorTopicYN="N">Parkinson’s disease</Keyword>
<Keyword MajorTopicYN="N">redox</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26097894</ArticleId>
<ArticleId IdType="pmc">PMC4474481</ArticleId>
<ArticleId IdType="mid">NIHMS689460</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Eur J Neurosci. 2003 Aug;18(3):589-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12911755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Jun 25;30(25):6088-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1829380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Neurol. 2012 Aug;11(8):697-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22814541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2011 Apr;7(4):203-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2015 Mar 1;24(5):1322-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25355420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Dec 15;17(12):1748-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22530666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jan 10;299(5604):256-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Jul 15;13(2):127-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20014998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2014 Feb 13;57(3):921-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24354345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2008 Mar 15;433(3):219-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18262354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotoxicology. 2008 Jul;29(4):656-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Apr 9;392(6676):605-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Feb 27;537(1-3):63-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12606032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurodegener. 2011 May 19;6:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21595948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2002 Oct 17;136(1):317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12385818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2003 Apr;17(6):717-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12594173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Jun 1;44(11):1873-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18342017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Mar 30;49(12):2715-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20141169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrients. 2012 Oct 09;4(10):1399-440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23201762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jun 27;276(5321):2045-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9197268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2005 Apr;76(4):672-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15726496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 May 21;304(5674):1158-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Apr 6;32(13):3368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8461300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2013 Dec 10;532(1):18-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23954870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1974 Jan 15;38(3):263-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4853125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2002 Mar;51(3):296-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 May;9(5):603-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17465883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mutat. 2011 Dec;32(12 ):1390-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21850687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2011 Jun;119(6):866-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21269927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2014 Oct 15;230(2):85-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24503016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2013 Jan 15;22(2):328-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23065705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2009 Jun 13;373(9680):2055-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19524782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2004 Jul;18(10):1102-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15132975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2004 Nov 18;44(4):601-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15541309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1983 Jul;80(14):4546-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6192438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 1992 Aug 17;142(2):128-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1454205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2004 Nov 18;44(4):595-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15541308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2012 May 1;21(9):1931-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22228096</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Johnson, William M" sort="Johnson, William M" uniqKey="Johnson W" first="William M" last="Johnson">William M. Johnson</name>
</region>
<name sortKey="Chen, Shu G" sort="Chen, Shu G" uniqKey="Chen S" first="Shu G" last="Chen">Shu G. Chen</name>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<name sortKey="Wilson Delfosse, Amy L" sort="Wilson Delfosse, Amy L" uniqKey="Wilson Delfosse A" first="Amy L" last="Wilson-Delfosse">Amy L. Wilson-Delfosse</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000498 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000498 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26097894
   |texte=   The roles of redox enzymes in Parkinson's disease: Focus on glutaredoxin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26097894" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020